This paper examines a schema for graph-theoretic clustering using node-based resilience measures. Node-based resilience measures optimize an objective based on a critical set of nodes whose removal causes some severity of disconnection in the network. Beyond presenting a general framework for the usage of node based resilience measures for variations of clustering problems, we experimentally validate the usefulness of such methods in accomplishing the following: (i) clustering a graph in one step without knowing the number of clusters a priori; (ii) removing noise from noisy data; and (iii) detecting overlapping communities. We demonstrate that this clustering schema can be applied successfully using a wide range of data, including both real and synthetic networks, both natively in graph form and also expressed as point sets


Engineering Program

Document Type


Additional Information

This paper is an extended version of our paper published in ICDM 2016.



Rights Information

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).


complex networks, clustering, data mining, graph theoretic algorithms

Publication Date


Journal Title

Applied Sciences