Interaction of YOYO-1 with guanine-rich DNA

Abstract

The oxazole homodimer YOYO-1 has served as a valuable tool for the detection and quantification of nucleic acids. While the base specificity and selectivity of binding of YOYO-1 has been researched to some extent, the effect of unorthodox nucleic acid conformations on dye binding has received relatively less attention. In this work, we attempt to correlate the quadruplex-forming ability of G-rich sequences with binding of YOYO-1. Oligonucleotides differing in the number of tandem G repeats, total length, and length of loop sequence were evaluated for their ability to form quadruplexes in presence of sodium (Na+) or potassium (K+) ions. The fluorescence behavior of YOYO-1 upon binding such G-rich sequences was also ascertained. A distinct correlation was observed between the strength and propensity of quadruplex formation, and the affinity of YOYO-1 to bind such sequences. Specifically, as exemplified by the oligonucleotides 5′-G4T2G4-3′ and 5′-G3TG3TG3-3′, sequences possessing longer G-rich regions and shorter loop sequences formed stronger quadruplexes in presence of K+ which translated to weaker binding of YOYO-1. The dependence of binding of YOYO-1 on sequence and structural features of G-rich DNA has not been explored previously and such studies are expected to aid in more effective interpretation of applications involving the fluorophore.

Department(s)

Chemistry and Biochemistry

Document Type

Article

DOI

https://doi.org/10.1080/07391102.2013.807752

Keywords

fluorescence enhancement of intercalating dyes, G-quadruplex, G-quartet dependence on monovalent cations, nucleic acid staining reagents, quadruplex topology, YOYO-1

Publication Date

7-3-2014

Journal Title

Journal of Biomolecular Structure and Dynamics

Share

COinS