High-energy X-ray diffraction of a hydrous silicate liquid under conditions of high pressure and temperature in a modified hydrothermal diamond anvil cell


In situ high-energy X-ray diffraction measurements were made for the first time on a water-saturated silicate melt at high pressure and temperature. A modified hydrothermal diamond anvil cell (HDAC), designed to minimize the path length of the X-ray beam within a diamond anvil and to increase the solid angle of the diffracted beam, was used to reduce high background contributions and extend X-ray diffraction data collection in Q space. Quantitative differential pair distribution function (PDF) analysis of X-ray diffraction data show that the first measurable (Si-O) peak is 0.095 Å greater in length in the hydrous melt than in the starting glass. Contributions from the H2O O-O correlations, as well as from the second nearest neighbor O-O correlations within the silicate melt, are evident within the second peak of the differential PDF. The procedure described opens new opportunities to directly investigate volatile-rich melts at high pressure and temperature.


Physics, Astronomy, and Materials Science

Document Type





high pressure, high temperature, high-energy X-ray diffraction, hydrothermal diamond anvil cell, hydrous silicate liquid

Publication Date


Journal Title

High Pressure Research