Illumina sequencing of 16S rRNA tag shows disparity in rhizobial and non-rhizobial diversity associated with root nodules of mung bean (Vigna radiata L.) growing in different habitats in Pakistan


In Rhizobium-legume symbiosis, the nodule is the most frequently studied compartment, where the endophytic/symbiotic microbiota demands critical investigation for development of specific inocula. We identified the bacterial diversity within root nodules of mung bean from different growing areas of Pakistan using Illumina sequencing of 16S rRNA gene. We observed specific OTUs related to specific site where Bradyrhizobium was found to be the dominant genus comprising of 82–94% of total rhizobia in nodules with very minor fraction of sequences from other rhizobia at three sites. In contrast, Ensifer (Sinorhizobium) was single dominant genus comprising 99.9% of total rhizobial sequences at site four. Among non-rhizobial sequences, the genus Acinetobacter was abundant (7–18% of total sequences), particularly in Bradyrhizobium-dominated nodule samples. Rhizobia and non-rhizobial PGPR isolated from nodule samples include Ensifer, Bradyrhizobium, Acinetobacter, Microbacterium and Pseudomonas strains. Co-inoculation of multi-trait PGPR Acinetobacter sp. VrB1 with either of the two rhizobia in field exhibited more positive effect on nodulation and plant growth than single-strain inoculation which favors the use of Acinetobacter as an essential component for development of mung bean inoculum. Furthermore, site-specific dominance of rhizobia and non-rhizobia revealed in this study may contribute towards decision making for development and application of specific inocula in different habitats.



Document Type




Acinetobacter, Bradyrhizobium, Ensifer, Illumina sequencing of 16S rRNA gene, Metagenomics, Site-specific dominance

Publication Date


Journal Title

Microbiological Research