Effects of sampling interval on spatial patterns and statistics of watershed nitrogen concentration

Abstract

This study investigates how spatial patterns and statistics of a 30 m resolution, model-simulated, watershed nitrogen concentration surface change with sampling intervals from 30 m to 600 m for every 30 m increase for the Little River Watershed (Georgia, USA). The results indicate that the mean, standard deviation, and variogram sills do not have consistent trends with increasing sampling intervals, whereas the variogram ranges remain constant. A sampling interval smaller than or equal to 90 m is necessary to build a representative variogram. The interpolation accuracy, clustering level, and total hot spot areas show decreasing trends approximating a logarithmic function. The trends correspond to the nitrogen variogram and start to level at a sampling interval of 360 m, which is therefore regarded as a critical spatial scale of the Little River Watershed.

Department(s)

Geography, Geology, and Planning

Document Type

Article

DOI

https://doi.org/10.2747/1548-1603.46.2.172

Publication Date

9-15-2009

Journal Title

GIScience and Remote Sensing

Share

COinS