Title

Detrital zircon geothermochronology reveals pre-Alleghanian exhumation of regional Mississippian sediment sources in the southern Appalachian Valley and Ridge Province

Abstract

The Black Warrior foreland basin records sedimentation associated with the development of intersecting Ouachita and Alleghanian thrust belts along the southern margin of Laurentia. Mississippian–Pennsylvanian units in the Black Warrior basin are interpreted to be sourced from either the northern Appalachians and mid-continent or more regionally from the southern Appalachians or nearby Ouachita thrust belt. We present detrital zircon U-Pb ages and Th/U values from Paleozoic units that indicate zircon from the Mississippian Hartselle Sandstone are temporally and chemically compatible with being sourced from the southern Appalachians. Zircon mixing models suggest sediment was primarily recycled from Cambrian, Ordovician, and Devonian strata in the Appalachian Valley and Ridge, with minor influx from Piedmont units. A ca. 415 Ma zircon population requires additional input from the Maya Block of the Yucatan Peninsula or similar outboard terranes. We present zircon (U-Th)/He analysis and thermal history modeling of Paleozoic units, which detail pre-Alleghanian exhumation in the Appalachian Valley and Ridge. Both the Cambrian Chilhowee Group and Pennsylvanian Pottsville Formation exhibit (U-Th)/He dates ranging from 507 to 263 Ma with a Mississippian subset (353–329 Ma, n = 4), which indicates rapid cooling and inferred exhumation during Late Devonian–Early Mississippian Neoacadian tectonism. We propose a Mississippian drainage system that transported material along southern Appalachian structural fabrics to the juncture between Appalachian and Ouachita thrust belts followed by a sediment-routing rotation toward the Black Warrior foreland. This interpretation honors chemical-age zircon data, accounts for metamorphic grains in thin section petrography, and matches Mississippian–Pennsylvanian Black Warrior foreland lithostratigraphic relationships

Department(s)

Geography, Geology, and Planning

Document Type

Article

DOI

https://doi.org/10.1130/GES02427.1

Publication Date

11-2-2021

Journal Title

Geosphere

Share

COinS