Genetic and environmental integration of the hawkmoth pollination syndrome in Ruellia humilis (Acanthaceae)

Abstract

Background and Aims The serial homology of floral structures has made it difficult to assess the relative contributions of selection and constraint to floral integration. The interpretation of floral integration may also be clouded by the tacit, but largely untested, assumption that genetic and environmental perturbations affect trait correlations in similar ways. In this study, estimates of both the genetic and environmental correlations between components of the hawkmoth pollination syndrome are presented for chasmogamous flowers of Ruellia humilis, including two levels of control for serial homology. Methods A greenhouse population for quantitative genetic analysis was generated by a partial diallel cross between field-collected plants. An average of 634 chasmogamous flowers were measured for each of eight floral traits that contribute to the hawkmoth syndrome. Genetic correlations (across parents) and environmental correlations (across replicate flowers) were estimated by restricted maximum likelihood. Key Results Stigma height, anther height and floral tube length were very tightly integrated in their responses to both genetic and environmental perturbations. The inclusion of floral disc width as a control for serial homology suggests this integration is an adaptive response to correlational selection imposed by pollinators. In contrast, integration of non-homologous traits was low. Furthermore, when comparisons between the dimensions of serially homologous structures were excluded, the genetic and environmental correlation matrices showed little congruence. Conclusions The results suggest that hawkmoths have imposed strong correlational selection on floral traits involved in the deposition and removal of pollen, and that this is a consequence of stabilizing selection on the relative positions of stigmas and anthers in the face of substantial flower size variation. Low integration of other floral traits, and conflicting patterns of genetic and environmental correlations among these traits, suggest weak or no correlational selection within the range of variability expressed within a population.

Department(s)

Biology

Document Type

Article

DOI

https://doi.org/10.1093/aob/mcx003

Keywords

correlational selection, floral integration, flower size variation, genetic correlation, hawkmoth pollination, herkogamy, phenotypic integration, Ruellia humilis

Publication Date

2017

Journal Title

Annals of botany

Share

COinS