Document Type


Publication Date



Early gestation, Epigenetics, Feed efficiency, Fetal programming, Metabolizable protein


Maternal nutrition affects the development of the fetus and postnatal performance of the calf. Methionine may play a critical role in developmental programming and is likely deficient in beef cows fed low-quality forage. The objective of this study was to determine the effect of metabolizable methionine supply to lactating beef cows during the periconception period on performance of cows, calves, and subsequent offspring. This project involved two consecutive production cycles commencing at calving in which dietary treatments were fed to cows during the periconception period along with measurements on cows and initial calves in Production Cycle 1, and measurements on subsequent calves in Production Cycle 2. Brangus-Angus crossbred lactating beef cows (N = 108; age = 6.4 (2.8) year) were stratified by previous calving date and assigned to one of three supplements: (1) control, molasses plus urea at 2.72 kg/day as fed, (2) fishmeal, 2.27 kg/day molasses plus urea plus 0.33 kg/day as fed of fishmeal, and (3) methionine, 2.72 kg/day of molasses plus urea plus 9.5 g/day of 2-hydroxy-4-(methylthio)-butanoic acid. Cows were fed supplements and low-quality limpograss (Hemarthria altissima) hay while grazing dormant bahiagrass (Paspalum notatum Flüggé) pastures during the 115-day periconception period from December 2014 to April 2015 in Production Cycle 1 only. Body weight change and milk yield of cows were measured during the periconception period in Production Cycle 1. Body weight of calves was measured at birth and weaning in both production cycles. Following weaning in Production Cycle 2, eight subsequent steer calves per treatment were individually housed for a 42-day metabolism experiment. Treatment did not affect (P > 0.10) BW change of cows, but cows fed methionine tended (P = 0.09) to produce more energy-corrected milk than control and fishmeal. Treatment did not affect (P > 0.10) 205-day adjusted weaning weight of calves in either production cycle. During the metabolism experiment, subsequent calves from dams fed fishmeal and methionine gained faster (P < 0.05) and had greater (P < 0.05) gain:feed than control calves. Methionine calves tended (P = 0.06) to have greater apparent total tract NDF and ADF digestibility and lesser (P < 0.05) blood glucose concentration than control and fishmeal calves. These data indicate that maternal methionine supply during the periconception period plays an important role in programming future performance of the offspring.

Recommended Citation

Silva, G. M., C. D. Chalk, J. Ranches, T. M. Schulmeister, D. D. Henry, N. DiLorenzo, J. D. Arthington, P. Moriel, and P. A. Lancaster. "Effect of rumen-protected methionine supplementation to beef cows during the periconception period on performance of cows, calves, and subsequent offspring." Animal 15, no. 1 (2021): 100055.

DOI for the article