Date of Graduation

Fall 2014


Master of Science in Biology



Committee Chair

Paul Schweiger


The acetic acid bacterium Gluconobacter oxydans is well known for its ability to incompletely oxidize carbon substrates under normal conditions. The incomplete oxidations are carried out by membrane-bound dehydrogenases that channel electrons directly into the electron transport chain. Many of these oxidative products are regio- and stereo-specific, and the use of G. oxydans in industrial practices allows the production of enantiopure products that can be difficult or impossible to obtain using traditional chemical synthesis. Thus, this organism is of industrial use and the improvement of strains via genetic engineering has the potential to produce novel products as well as increase the yields. However, genetic manipulation in G. oxydans is often difficult and time-consuming because few genetic tools are available for use in this organism. To this end, a series of tools have been constructed: a fluorescent-protein based screening system, a surface display system, and an inducible promoter system. The results of the construction of these three tools for use in G. oxydans and initial analyses of the effectiveness within the host are presented.


Gluconobacter oxydans, incomplete oxidation, fluorescent reporter, surface display, inducible promoter

Subject Categories



© Kaleb Scott Pearson

Campus Only