Date of Graduation

Summer 2021

Degree

Master of Science in Materials Science

Department

Physics, Astronomy, and Materials Science

Committee Chair

Ridwan Skidja

Keywords

orthocarboranes, boron carbide, reactive molecular dynamics simulations, data mining, machine learning

Subject Categories

Artificial Intelligence and Robotics | Atomic, Molecular and Optical Physics | Other Physical Sciences and Mathematics | Quantum Physics

Abstract

In this study, an important aspect of the synthesis process for a-BxC:Hy was systematically modeled by utilizing the Reactive Molecular Dynamics (MD) in modeling the argon bombardment from the orthocarborane molecules as the precursor. The MD simulations are used to assess the dynamics associated with the free radicals that result from the ion bombardment. By applying the Data Mining/Machine Learning analysis into the datasets generated from the large reactive MD simulations, I was able to identify and quality the kinetics of these radicals. Overall, this approach allows for a better understanding of the overall mechanism at the atomistic level of Ar bombardment and the role of radical species towards the formation of the orthocarborane network and in turn the boron carbide thin films

Copyright

© Kwabena Asante-Boahen

Open Access

Share

COinS