Title

Effect of sprung (suspended) floor on lower extremity stiffness during a force-returning ballet jump

Abstract

Our objective in this study was to compare stiffness of bilateral lower extremities (LEs) in ballet dancers performing sauté on a low-stiffness "sprung floor" to that during the same movement on a high-stiffness floor (wood on concrete). LE stiffness was calculated as the ratio of vertical ground reaction force (in kN) to compression of the lower limb (in meters). Seven female dancers were measured for five repetitions each at the point of maximum leg compression while performing sauté on both of the surfaces, such that 43 ms of data were represented for each trial. The stiffness of bilateral LEs at the point of maximum compression was higher by a mean difference score of 2.48 ± 2.20 kN/m on the low-stiffness floor compared to a high-stiffness floor. Paired t-test analysis of the difference scores yielded a one-tailed probability of 0.012. This effect was seen in six out of seven participants (one participant showed no difference between floor conditions). The finding of increased stiffness of the LEs in the sprung floor condition suggests that some of the force of landing the jump was absorbed by the surface, and therefore did not need to be absorbed by the participants' LEs themselves. This in turn implies that a sprung dance floor may help to prevent dance-related injuries.

Department(s)

Physical Therapy

Document Type

Article

DOI

https://doi.org/10.21091/mppa.2011.4031

Publication Date

12-1-2011

Journal Title

Medical Problems of Performing Artists

Share

COinS