Abstract

This paper describes the use of several characterization methods to examinealumina nanotubule membranes that have been modified with specific silanes. The functionof these silanes is to alter the transport properties through the membrane by changing thelocal environment inside the alumina nanotube. The presence of alkyl groups, either long(C18) or short and branched (isopropyl) hydrocarbon chains, on these silanes significantlydecreases the rate of transport of permeant molecules through membranes containingalumina nanotubes as monitored via absorbance spectroscopy. The presence of an ionicsurfactant can alter the polarity of these modified nanotubes, which correlates to anincreased transport of ions. Fluorescent spectroscopy is also utilized to enhance thesensitivity of detecting these permeant molecules. Confirmation of the alkylsilaneattachment to the alumina membrane is achieved with traditional infrared spectroscopy,which can also examine the lifetime of the modified membrane. The physical parameters ofthese silane-modified porous alumina membranes are studied via scanning electronmicroscopy. The alumina nanotubes are not physically closed off or capped by the silanesthat are attached to the alumina surfaces.

Department(s)

Chemistry and Biochemistry

Document Type

Article

DOI

https://doi.org/10.3390/s7112942

Rights Information

© 2007 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/).

Keywords

porous alumina membranes, sensors, nanotubes, silanization, membrane modification, spectroscopy

Publication Date

2007

Journal Title

Sensors

Share

COinS