Short paper: Understanding the attention model of humans in sarcastic videos
Abstract
Sarcasm is a common part of human communication that has long been ignored by sentiment analysis researchers. Sarcasm is also an important aspect in entertainment industry for TV series, movies etc. Recently, some works have shown the applicability of multimodality (e.g., image and text) in sarcasm research from a sentiment analysis perspective instead of text only approaches. However, none of those studies harness video. We argue videos can be interesting to study to understand the nature of sarcasm on social media. We study how sarcastic videos can gain an individual's attention and popularity at large. We show how an AI agent can suggest areas that might gain a viewer's attention in a sarcastic video. Identification of both attention gaining areas (AGA) and objects contained in sarcastic videos can be compared with the AGAs and objects in previously successful/popular sarcastic videos. In this paper, we present an AI agent to identify the optimal AGAs and one empirical study of objects commonly shown in directed sarcastic video settings.
Department(s)
Computer Science
Document Type
Conference Proceeding
DOI
https://doi.org/10.1109/TransAI46475.2019.00022
Keywords
Attention model, Sarcasm, Semantic segmentation, Videos
Publication Date
9-1-2019
Recommended Citation
Das, Dipto, Md Forhad Hossain, and Anthony J. Clark. "Short Paper: Understanding the Attention Model of Humans in Sarcastic Videos." In 2019 First International Conference on Transdisciplinary AI (TransAI), pp. 84-87. IEEE, 2019.