Crystal Plasticity Modeling of Void Growth on Grain Boundaries in Ni-Based Superalloys
Abstract
In this work, we explore the effect of misorientation angles of crystal orientations between two grains along the grain boundary (GB) on void growth behavior in polycrystalline Ni-based superalloys by using a crystal plasticity finite element method. Quantitative analysis is conducted to study the coupled roles of the crystal orientation and stress triaxiality in void growth in bicrystals. Based on our simulation results, we find that, as the main loading axis perpendicular to the GB, voids grow more slowly on tilt GBs in bicrystals than those in single and bicrystal samples with twist GBs, while the void growth in single- and bicrystal samples with twist GBs exhibited almost the same rate and increased with the stress triaxiality levels. The interaction between two crystals bonded with the GB activates the effective Schmid factors in each crystal, which results in asymmetric distribution of the equivalent plastic strain around the void and induces distinct irregularly shaped voids during deformation.
Department(s)
Physics, Astronomy, and Materials Science
Document Type
Article
DOI
https://doi.org/10.1007/s11837-019-03694-3
Publication Date
11-1-2019
Recommended Citation
Chen, Tianju, Ridwan Sakidja, Wai-Yim Ching, and Caizhi Zhou. "Crystal Plasticity Modeling of Void Growth on Grain Boundaries in Ni-Based Superalloys." JOM 71, no. 11 (2019): 3859-3868.
Journal Title
JOM