Abstract

Metal-insulator-metal tunnel junctions are common throughout the microelectronics industry. The industry standard AlOx tunnel barrier, formed through oxygen diffusion into an Al wetting layer, is plagued by internal defects and pinholes which prevent the realization of atomically thin barriers demanded for enhanced quantum coherence. In this work, we employ in situ scanning tunneling spectroscopy along with molecular-dynamics simulations to understand and control the growth of atomically thin Al2O3 tunnel barriers using atomic-layer deposition. We find that a carefully tuned initial H2O pulse hydroxylated the Al surface and enabled the creation of an atomically thin Al2O3 tunnel barrier with a high-quality M-I interface and a significantly enhanced barrier height compared to thermal AlOx. These properties, corroborated by fabricated Josephson junctions, show that atomic-layer deposition Al2O3 is a dense, leak-free tunnel barrier with a low defect density which can be a key component for the next generation of metal-insulator-metal tunnel junctions.

Department(s)

Physics, Astronomy, and Materials Science

Document Type

Article

DOI

https://doi.org/10.1103/PhysRevApplied.7.064022

Rights Information

© 2017 American Physical Society

Publication Date

6-16-2017

Journal Title

Physical Review Applied

Share

COinS