Study of amorphous boron carbide (a-BxC) materials using Molecular Dynamics (MD) and Hybrid Reverse Monte Carlo (HRMC)

Abstract

We present a computational study of amorphous boron carbide (a-BxC) models using Molecular Dynamics (MD) studied with Stillinger-Weber (SW) and ReaxFF potential. The atomic structure factor (S(Q)), radial distribution function (RDF) and bond lengths comparison with other experimental and ab initio models show that a random arrangement of icosahedra (B12, B11C) interconnected by chains (CCC, CBC) are present in a-BxC. Subsequently, Hybrid Reverse Monte Carlo (HRMC) method is used to reconstruct a-BxC structures. The existing SW potential parameters of Boron are optimized for the α-rhombohedral (Icosahedral B12) boron structure using potential energy minimization and incorporated into HRMC. The a-BxC modeled from MD simulation is used as a sample for experimental input parameters like RDF, S(Q), coordination environments (CO), bond angle distribution (BAD) and bond length (BL) to guide initial configuration and simulation in HRMC. An accurate agreement of structural information between HRMC and MD generated models was found.

Department(s)

Physics, Astronomy, and Materials Science

Document Type

Article

DOI

https://doi.org/10.1016/j.jnoncrysol.2019.119783

Keywords

Amorphous Boron carbide, HRMC, Molecular dynamics, Short-range order, Stillinger–Weber potential, α-rhombohedral boron

Publication Date

2-15-2020

Journal Title

Journal of Non-Crystalline Solids

Share

COinS