Neumann problems for nonlinear hemivariational inequalities
Abstract
In this paper we study nonlinear Neumann problems driven by the p-Laplacian and having a nonsmooth potential. Using techniques from the nonsmooth critical point theory, we prove two existence theorems and a multiplicity result.
Department(s)
Mathematics
Document Type
Article
DOI
https://doi.org/10.1002/mana.200410482
Keywords
Critical points, Generalized subdifferentials, Least action principle, Local linking theorem, Locally Lipschitz functions, Multiple solutions, Nonsmooth ps-condition, p-Laplacian
Publication Date
2-20-2007
Recommended Citation
Hu, Shouchuan, and Nikolaos S. Papageorgiou. "Neumann problems for nonlinear hemivariational inequalities." Mathematische Nachrichten 280, no. 3 (2007): 290-301.
Journal Title
Mathematische Nachrichten