"On separation of minimal Riesz energy points on spheres in Euclidean s" by A. B. J. Kuijlaars, E. B. Saff et al.
 

On separation of minimal Riesz energy points on spheres in Euclidean spaces

Abstract

Let Sd denote the unit sphere in the Euclidean space Rd + 1 (d ≥ 1). Let N be a natural number (N ≥ 2), and let ωN {colon equals} { x1, ..., xN } be a collection of N distinct points on Sd on which the minimal Riesz s-energy is attained. In this paper, we show that the points x1, ..., xN are well-separated for the cases d - 1 ≤ s < d.

Department(s)

Mathematics

Document Type

Article

DOI

https://doi.org/10.1016/j.cam.2005.04.074

Keywords

Generalized Thomson problem, Minimal energy, Riesz energy, Separation of mininmal energy points, Spherical potential

Publication Date

2-1-2007

Journal Title

Journal of Computational and Applied Mathematics

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 26
  • Usage
    • Abstract Views: 2
  • Captures
    • Readers: 11
see details

Share

COinS