Developing Efficient Procedures for Automated Sinkhole Extraction from Lidar DEMs

Abstract

Sinkhole detection in karst areas is usually difficult through remote sensing image interpretation. We present an efficient approach to extract mature sinkholes from lidar DEM. First, an adaptive Wiener filter (AWF) and hierarchical watershed segmentation (HWs) are applied to identify all local depression or potential sinkholes. Second, a hole-filling algorithm is applied to the potential sinkholes, and nine spatial features are extracted. Finally, the random forest classifier is used to select true sinkholes from all potential sinkholes. Our results show that this approach is efficient for detecting mature sinkholes from lidar data, and it can be used for risk assessment and hazard preparedness in karst areas.

Department(s)

Geography, Geology, and Planning

Document Type

Article

DOI

https://doi.org/10.14358/PERS.79.6.545

Publication Date

2013

Journal Title

Photogrammetric Engineering & Remote Sensing

Share

COinS