Some Change of Ring Theorems for Matlis Reflexive Modules

Abstract

Suppose [formula ommitted] is a local homomorphism of local rings. We show that if M is a Matlis reflexive R-module, then [formula ommitted] and [formula ommitted] are Matlis reflexive S-modules if S is module-finite over the image of R. In case S = Ř, the m-adic completion of R, we show that if M is a reflexive R-module, then Ř ⊗RMis a reflexive Ř-module and in fact [formula ommitted]. We also show that if R is any local ring and M and N are two reflexive R-modules, then [formula ommitted] and [formula ommitted] are reflexive R-modules for all i. © 1994, Taylor & Francis Group, LLC. All rights reserved.

Department(s)

Mathematics

Document Type

Article

DOI

https://doi.org/10.1080/00927879408825040

Publication Date

1-1-1994

Journal Title

Communications in Algebra

Share

COinS