Ensemble methods with simple features for document zone classification
Abstract
Document layout analysis is of fundamental importance for document image understanding and information retrieval. It requires the identification of blocks extracted from a document image via features extraction and block classification. In this paper, we focus on the classification of the extracted blocks into five classes: text (machine printed), handwriting, graphics, images, and noise. We propose a new set of features for efficient classifications of these blocks. We present a comparative evaluation of three ensemble based classification algorithms (boosting, bagging, and combined model trees) in addition to other known learning algorithms. Experimental results are demonstrated for a set of 36503 zones extracted from 416 document images which were randomly selected from the tobacco legacy document collection. The results obtained verify the robustness and effectiveness of the proposed set of features in comparison to the commonly used Ocropus recognition features. When used in conjunction with the Ocropus feature set, we further improve the performance of the block classification system to obtain a classification accuracy of 99.21%. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
Department(s)
Engineering Program
Document Type
Conference Proceeding
DOI
https://doi.org/10.1117/12.912103
Keywords
Document image analysis, ensemble classifiers, layout analysis, zone classification
Publication Date
2-27-2012
Recommended Citation
Obafemi-Ajayi, Tayo, Gady Agam, and Bingqing Xie. "Ensemble methods with simple features for document zone classification." In Document Recognition and Retrieval XIX, vol. 8297, p. 829706. International Society for Optics and Photonics, 2012.
Journal Title
Proceedings of SPIE - The International Society for Optical Engineering