Predictive Modeling of Sports-Related Concussions using Clinical Assessment Metrics
Abstract
Concussions represent a growing health concern that are challenging to diagnose and manage. Roughly four million concussions are diagnosed every year in the United States. While research in machine learning applications for concussions has focused on using advanced metrics such neuroimaging techniques and blood biomarkers, these metrics are yet to be implemented at a clinical level due to cost and reliability concerns. Therefore, concussion diagnosis is still reliant on clinical evaluations of symptoms, balance, and neurocognitive status and function. The lack of a universal threshold on these assessments makes the diagnosis process reliant on a physician's interpretation of these assessment scores. This study aims to explore the use of machine learning techniques to aid the concussion diagnosis process. These models could provide an automated means to flag concussed patients even before being seen by a doctor as well as expand the scope of concussion diagnosis to remote locations and areas with limited access to doctors.
Department(s)
Engineering Program
Document Type
Conference Proceeding
DOI
https://doi.org/10.1109/SSCI47803.2020.9308473
Keywords
classification models, Concussions, predictive modeling
Publication Date
12-1-2020
Recommended Citation
Subhash, Sujit, Tayo Obafemi-Ajayi, Dennis Goodman, Donald Wunsch II, and Gayla R. Olbricht. "Predictive Modeling of Sports-Related Concussions using Clinical Assessment Metrics." In 2020 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 513-520. IEEE, 2020.
Journal Title
2020 IEEE Symposium Series on Computational Intelligence, SSCI 2020