Efficient shape-LUT classification for document image restoration

Abstract

In previous work we showed that Look Up Table (LUT) classifiers can be trained to learn patterns of degradation and correction in historical document images. The effectiveness of the classifiers is directly proportional to the size of the pixel neighborhood it considers. However, the computational cost increases almost exponentially with the neighborhood size. In this paper, we propose a novel algorithm that encodes the neighborhood information efficiently using a shape descriptor. Using shape descriptor features, we are able to characterize the pixel neighborhood of document images with much fewer bits and so obtain an efficient system with significantly reduced computational cost. Experimental results demonstrate the effectiveness and efficiency of the proposed approach. © 2009 SPIE-IS&T.

Document Type

Conference Proceeding

DOI

https://doi.org/10.1117/12.806168

Keywords

Document degradation models, Document image analysis, Document image enhancement, Historical documents, Image enhancement

Publication Date

3-20-2009

Journal Title

Proceedings of SPIE - The International Society for Optical Engineering

Share

COinS