Lateral load capacity of cast-in-place shafts behind an MSE wall

Abstract

Current practice for designing laterally loaded cast-in-place shafts that pass through an MSE Wall involves isolating the shafts from the MSE mass and anchoring the shafts into the underlying foundation material. Sizeable cost and time savings could be realized, while still maintaining stability and reliability, if a method were available to evaluate the lateral load capacity of a shaft that is supported by the MSE mass alone with no rock socket. Construction, instrumentation, and testing of multiple 0.9m (36in.) diameter shafts solely supported by a 6m (20 ft) MSE block wall was conducted for the Kansas Department of Transportation (KDOT). This paper describes the design and construction of the wall and shafts, and the results from the lateral load tests of two of the shafts. These shafts had lengths that were equal to the full height of the wall and 75 percent of the full height of the wall to evaluate the reduction in capacity if shorter foundation elements suspended in the MSE mass were used. Results for both load and deflection of the shafts and the relative deflections of the shafts and wall facing during loading are presented. Copyright ASCE 2009.

Document Type

Conference Proceeding

DOI

https://doi.org/10.1061/41022(336)72

Publication Date

9-14-2009

Journal Title

Geotechnical Special Publication

Share

COinS