The durability of silicone versus latex mock arteries

Abstract

Latex mock arteries used in medical device testing allow researchers to evaluate mechanical characteristics of intravascular medical products without using animal or human clinical studies for this data. Such intravascular situations include determining properties such as drag and steerability of catheters, recoil of vascular stents, and clinician training, in fatigue testing, the latex mock arteries are used to receive deployed products and are then repeatedly pressurized at biologically relevant pressures to determine the long term durability of the product. By matching dimensions and pressure-volume relationships (compliance) of these latex tubes, researchers have a reliable means to evaluate and predict product lifetimes. The problem with latex mock arteries is two-fold: First, they are opaque so the product inside the artery cannot be seen during evaluation of the integrity of the product or during clinical training sessions. Second, latex tubes fatigue; therefore, the loading that they place on the internalized products varies with time. During long term durability studies, latex tubes may have to be replaced as often as every 100 million cycles. This can be problematic with products that are difficult to redeploy. We have developed a clear silicone mock artery system that allows us to fabricate three-dimensional objects, including tubes with precise geometric and mechanical properties. Our evaluations show that the mock arteries can be stressed up to 400 million cycles with little or no change in mechanical properties. We are in the process of continuing evaluations to determine long term durability.

Department(s)

Physics, Astronomy, and Materials Science

Document Type

Conference Proceeding

Keywords

Accelerated, Arteries, Compliance, Durability, Fatigue, In-vitro, Latex, Mock, Silic one, Stents

Publication Date

5-9-2001

Journal Title

Biomedical Sciences Instrumentation

Citation-only

Share

COinS