Abstract

Water used for irrigation is a leading source of induced salinity in semiarid areas. Within the Irrigation District 005 in northern Mexico, there are more than 100 dairy farms housing over 72,000 dairy cows, 74% of which are concentrated in approximately 30 intensive-operation farms. Dairy farm effluents (DFE) and manure are collected and stored temporarily until they are applied to the land to fertilize pasture and other crops. DFE vary in salt content, depending on specific farm operations. The risk of soil salinization by DFE was estimated by measuring electrical conductivity (EC) of both well water and DFE, and comparing these values with 2.0 mS cm−1, a Mexican guideline for wastewater used in agriculture. Half of the effluents exceeded the EC limit, with values as high as 12.4 mS cm−1, whereas a few exceeded the EC limit in both well and effluent water. The generation of salt and its passing into soils expose a potential for soil salinization, if preventive measures are not taken. A salt load map was created that depicted the areas at higher risk of salinization. The simple technique utilized here can be applied in estimating salinization potential in areas where monitoring of soils, irrigation drains, and shallow groundwater is infrequent.

Department(s)

Geography, Geology, and Planning

Document Type

Article

DOI

https://doi.org/10.3390/soilsystems2040061

Rights Information

© 2018 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/).

Keywords

dairy farm effluent, land application, soil salinity, wastewater reuse

Publication Date

2018

Journal Title

Soil Systems

Share

COinS