Abstract
The origin of magnetism in metals has been traditionally discussed in two diametrically opposite limits: itinerant and local moments. Surprisingly, there are very few known examples of materials that are close to the itinerant limit, and their properties are not universally understood. In the case of the two such examples discovered several decades ago, the itinerant ferromagnets ZrZn2 and Sc3In, the understanding of their magnetic ground states draws on the existence of 3d electrons subject to strong spin fluctuations. Similarly, in Cr, an elemental itinerant antiferromagnet with a spin density wave ground state, its 3d electron character has been deemed crucial to it being magnetic. Here, we report evidence for an itinerant antiferromagnetic metal with no magnetic constituents: TiAu. Antiferromagnetic order occurs below a Néel temperature of 36 K, about an order of magnitude smaller than in Cr, rendering the spin fluctuations in TiAu more important at low temperatures. This itinerant antiferromagnet challenges the currently limited understanding of weak itinerant antiferromagnetism, while providing insights into the effects of spin fluctuations in itinerant-electron systems.
Document Type
Article
DOI
https://doi.org/10.1038/ncomms8701
Rights Information
This work is licensed under a Creative Commons Attribution 4.0 International License.
Publication Date
2015
Recommended Citation
Svanidze, E., Jiakui K. Wang, Tiglet Besara, L. Liu, Qingzhen Huang, T. Siegrist, Benjamin Frandsen et al. "An itinerant antiferromagnetic metal without magnetic constituents." Nature communications 6, no. 1 (2015): 1-7.
Journal Title
Nature communications