Nonlinear Autoregression with Positive Innovations
Abstract
Use of nonlinear models in analyzing time series data is becoming increasingly popular. This paper considers a broad class of nonlinear autoregressive models where the autoregressive part is additive and the terms are nonlinear functions of the past data. Also, the innovation distribution is supported on the non‐negative reals and satisfies a tail regularity condition. The linear parameters of the autoregression are estimated using a linear programming recipe which yields much more accurate estimates than traditional methods such as conditional least squares. Limiting distribution of the linear programming estimators is obtained. Simulation studies validate the asymptotic results and reveal excellent small sample properties of the LPE estimator.
Department(s)
Mathematics
Document Type
Article
DOI
https://doi.org/10.1111/1467-842x.00026
Keywords
nonlinear time series, linear programming estimators, regular variation
Publication Date
1998
Recommended Citation
Datta, Somnath, William P. McCormick, and George Mathew. "Nonlinear autoregression with positive innovations." Australian & New Zealand Journal of Statistics 40, no. 2 (1998): 229-239.
Journal Title
Australian & New Zealand Journal of Statistics