Gorenstein rings and irreducible parameter ideals
Abstract
Given a Noetherian local ring $ (R,m)$ it is shown that there exists an integer $ \ell$ such that $ R$ is Gorenstein if and only if some system of parameters contained in $ m^{\ell}$ generates an irreducible ideal. We obtain as a corollary that $ R$ is Gorenstein if and only if every power of the maximal ideal contains an irreducible parameter ideal.
Department(s)
Mathematics
Document Type
Article
DOI
https://doi.org/10.1090/s0002-9939-07-08958-7
Publication Date
2008
Recommended Citation
Marley, Thomas, Mark Rogers, and Hideto Sakurai. "Gorenstein rings and irreducible parameter ideals." Proceedings of the American Mathematical Society 136, no. 1 (2008): 49-53.
Journal Title
Proceedings of the American Mathematical Society