Regulated Nuclear-Cytoplasmic Localization of Interferon Regulatory Factor 3, a Subunit of Double-Stranded RNA-Activated Factor 1

Abstract

Viral double-stranded RNA (dsRNA) generated during the course of infection leads to the activation of a latent transcription factor, dsRNA-activated factor 1 (DRAF1). DRAF1 binds to a DNA target containing the type I interferon-stimulated response element and induces transcription of responsive genes. DRAF1 is a multimeric transcription factor containing the interferon regulatory factor 3 (IRF-3) protein and one of the histone acetyl transferases, CREB binding protein (CBP) or p300 (CBP/p300). In uninfected cells, the IRF-3 component of DRAF1 resides in the cytoplasm. The cytoplasmic localization of IRF-3 is dependent on a nuclear export signal, and we demonstrate IRF-3 recognition by the chromosome region maintenance 1 (CRM1) (also known as exportin 1) shuttling receptor. Following infection and specific phosphorylation, IRF-3 accumulates in the nucleus where it associates with CBP and p300. We identify a nuclear localization signal (NLS) in IRF-3 that is critical for nuclear accumulation. Mutation of the NLS abrogates nuclear localization even following infection. The NLS appears to be active constitutively, but it is recognized by only a subset of importin-α shuttling receptors. Evidence is presented to support a model in which IRF-3 normally shuttles between the nucleus and the cytoplasm but cytoplasmic localization is dominant prior to infection. Following infection, phosphorylated IRF-3 can bind to the CBP/p300 proteins resident in the nucleus. We provide the evidence of a role for CBP/p300 binding in the nuclear sequestration of a transcription factor that normally resides in the cytoplasm.

Document Type

Article

DOI

https://doi.org/10.1128/mcb.20.11.4159-4168.2000

Publication Date

2000

Journal Title

Molecular and cellular biology

Share

COinS