Initial Report on Molecular and Electronic Structure of Spherical Multiferrocenyl/tin(IV) (Hydr)oxide [(FcSn)12O14(OH)6]X2 Clusters

Abstract

Two spherical organic-inorganic ferrocene-tin (hydr)oxide clusters of general formula [(FcSn)12O14(OH)6]X2 (Fc = ferrocenyl, X = nitroso-dicyanmethanide, DCO- and benzoylcyanoxime, PCO- anions) were prepared by the direct hydrolysis of Fc2SnCl2 or FcSnCl3 precursors in the presence of light- and thermally stable Ag(DCO) or Ag(PCO) salts. Molecular structures of FcSnCl3Py2 (1), Fc2SnCl2Py2 (2), [(FcSn)12O14(OH)6](DCO)2 (3), and [(FcSn)12O14(OH)6](PCO)2 (4) were investigated by X-ray crystallography. Density function theory (DFT) and time-dependent density functional theory (TDDFT) calculations were conducted on FcSnCl3Py2, Fc2SnCl2Py2, and [(FcSn)12O14(OH)6]2+ compounds in order to elaborate electronic structures and assign transitions in UV-vis spectra of these systems. The DFT and TDDFT calculations suggest that the organometallic substituents in the [(FcSn)12O14(OH)6]2+ core are rather isolated from each other.

Department(s)

Chemistry and Biochemistry

Document Type

Article

DOI

https://doi.org/10.1021/acs.cgd.5b01568

Keywords

anions, hydrolysis, sandwich compounds, time dependant density functional theory, cluster chemistry

Publication Date

2016

Journal Title

Crystal growth & design

Share

COinS