Title
A combination of methods for building ensembles of classifiers
Abstract
In this paper we make an extensive study of different methods for building ensembles of classifiers. We examine variants of ensemble methods that are based on perturbing features. We illustrate the power of using these variants by applying them to a number of different problems. We find that the best performing ensemble is obtained by combining an approach based on random subspace with a cluster-based input decimated ensemble and the principal direction oracle. Compared with other state-of-the-art stand-alone classifiers and ensembles, this method consistently performed well across twelve diverse benchmark datasets. Another useful finding is that this approach does not require parameters to be carefully tuned for each dataset (in contrast to the fundamental importance of parameters tuning when using SVM and extreme learning machines), making our ensemble method well suited for practitioners since there is less risk of over-training. Another interesting finding is that random subspace can be coupled with several other ensemble methods to improve performance.
Department(s)
Information Technology and Cybersecurity
Document Type
Conference Proceeding
Keywords
f input decimated ensembles, Multiclassifier systems, Pattern classification, Random subspace
Publication Date
12-1-2012
Recommended Citation
Nanni, L., S. Brahnam, and A. Lumini. "A Combination of Methods for Building Ensembles of Classifiers." In Proceedings of the International Conference on Image Processing, Computer Vision, and Pattern Recognition (IPCV), p. 1. The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp), 2012.
Journal Title
Proceedings of the 2012 International Conference on Image Processing, Computer Vision, and Pattern Recognition, IPCV 2012