Title
Survey on LBP based texture descriptors for image classification
Abstract
The aim of this work is to find the best way for describing a given texture using a local binary pattern (LBP) based approach. First several different approaches are compared, then the best fusion approach is tested on different datasets and compared with several approaches proposed in the literature (for fair comparisons, when possible we have used code shared by the original authors). Our experiments show that a fusion approach based on uniform local quinary pattern (LQP) and a rotation invariant local quinary pattern, where a bin selection based on variance is performed and Neighborhood Preserving Embedding (NPE) feature transform is applied, obtains a method that performs well on all tested datasets. As the classifier, we have tested a stand-alone support vector machine (SVM) and a random subspace ensemble of SVM. We compare several texture descriptors and show that our proposed approach coupled with random subspace ensemble outperforms other recent state-of-the-art approaches. This conclusion is based on extensive experiments conducted in several domains using six benchmark databases.
Department(s)
Information Technology and Cybersecurity
Document Type
Article
DOI
https://doi.org/10.1016/j.eswa.2011.09.054
Keywords
Local binary patterns, Local quinary patterns, Random subspace, Support vector machines, Texture descriptors
Publication Date
2-15-2012
Recommended Citation
Nanni, Loris, Alessandra Lumini, and Sheryl Brahnam. "Survey on LBP based texture descriptors for image classification." Expert Systems with Applications 39, no. 3 (2012): 3634-3641.
Journal Title
Expert Systems with Applications