Title
Optimization of neural networks: A comparative analysis of the genetic algorithm and simulated annealing
Abstract
The escalation of Neural Network research in Business has been brought about by the ability of neural networks, as a tool, to closely approximate unknown functions to any degree of desired accuracy. Although, gradient based search techniques such as back-propagation are currently the most widely used optimization techniques for training neural networks, it has been shown that these gradient techniques are severely limited in their ability to find global solutions. Global search techniques have been identified as a potential solution to this problem. In this paper we examine two well known global search techniques, Simulated Annealing and the Genetic Algorithm, and compare their performance. A Monte Carlo study was conducted in order to test the appropriateness of these global search techniques for optimizing neural networks.
Document Type
Article
DOI
https://doi.org/10.1016/S0377-2217(98)00114-3
Keywords
Extrapolation, Genetic algorithm, Global solutions, Interpolation, Neural networks, Optimization, Simulated annealing
Publication Date
5-1-1999
Recommended Citation
Sexton, Randall S., Robert E. Dorsey, and John D. Johnson. "Optimization of neural networks: A comparative analysis of the genetic algorithm and simulated annealing." European Journal of Operational Research 114, no. 3 (1999): 589-601.
Journal Title
European Journal of Operational Research