Prime And Irreducible Elements In Zx , Hamiltonian Cycles In Concentric Circle Graphs, And Fibonacci Sequences In Zx
Date of Graduation
Summer 2000
Degree
Master of Science in Mathematics
Department
Mathematics
Committee Chair
Kishor Shah
Abstract
This thesis is composed of three distinct works. In the first part, we characterize the set of all prime elements and the set of all irreducible elements in Zx. Our characterization shows that the set of irreducible elements is contained in the set of prime elements; in particular, our results imply that 3, 9 and 27 are prime elements, but not irreducible elements in Z₆₀. In the second part, we define a new type of graph: a concentric circle graph. We develop the theory of concentric circle graphs and present polynomial time algorithms for determining Hamiltonian cycles in certain types of concentric circle graphs. In the third part, we discuss the Fibonacci sequence in Zx. All of the theorems stated in our thesis are new to us.
Subject Categories
Mathematics
Copyright
© Christopher Mueller
Recommended Citation
Mueller, Christopher, "Prime And Irreducible Elements In Zx , Hamiltonian Cycles In Concentric Circle Graphs, And Fibonacci Sequences In Zx" (2000). MSU Graduate Theses/Dissertations. 1004.
https://bearworks.missouristate.edu/theses/1004
Dissertation/Thesis