Date of Graduation
Spring 2011
Degree
Master of Science in Geospatial Sciences
Department
Geography, Geology, and Planning
Committee Chair
Kevin Mickus
Abstract
The Tri-State mining district of NE Oklahoma, SE Kansas and SW Missouri was one of the world class Mississippi Valley type lead-zinc mining districts. It is one of several such deposits found in the Ozarks region of the U.S. To study the nature and extent of regional structures plus the relationship between Precambrian basement topography and lithology to the known ore deposits, existing gravity data were merged with 500 new data points. Residual gravity and magnetic maps were constructed using wavelength filtering. Both maps highlight an obvious NW-trending anomaly pattern which may be caused by variations in the Precambrian basement topography. Mining fields are associated with either a gravity and/or magnetic anomaly. In addition, a horizontal magnetic gradient map was constructed which shows obvious NW and NE-trending anomalies. In order to aid in determining the source of the gravity and magnetic anomalies, three two-dimensional models were constructed across the Tri-State district. The number of constraints is limited but the models suggest that the high-amplitude maxima are caused by a combination of basement topography and mafic material within the Precambrian. The known mining fields are found to be either at the intersection of NW- and NE-trending magnetic anomalies, implying that these linear anomalies may be faults that carried the ore-fluids from the south, and/or on the sides of mafic-rich Precambrian basement topographic highs.
Keywords
gravity, magnetic, Tri-State, lead-zinc, geophysics
Subject Categories
Cosmology, Relativity, and Gravity | Geology | Mining Engineering
Copyright
© Matt Lane Cosatt
Recommended Citation
Cosatt, Matt Lane, "Gravity and Magnetic Analysis of the Tri-State Mining District: Kansas, Missouri and Oklahoma" (2011). MSU Graduate Theses. 2151.
https://bearworks.missouristate.edu/theses/2151
Campus Only