Date of Graduation

Spring 2020

Degree

Master of Science in Chemistry

Department

Chemistry and Biochemistry

Committee Chair

Matthew Siebert

Abstract

Dependence on petroleum and petrochemical products is unsustainable as it is both a finite resource and environmentally hazardous. Biodiesel is a proposed alternative, but has complications including possessing poor cold weather operability and lacking the ability to supplement other petrochemical products (e.g., ethylene, hexane, etc.) relied upon in society. Pyrolysis of biodiesel has demonstrated the formation of smaller hydrocarbons comprising many of these petrochemical products. Our aim is to computationally simulate the pyrolysis of methyl linoleate, the most prevalent component in biodiesel formed in the US (from soybean). We make use of unimolecular direct dynamics describing intramolecular processes, introducing Temperature acceleration translated in ADMP, an ensemble of trajectories was propagated with forced derived from the D3-M06-2X/6-31+G(d,p) model chemistry. The results obtained from this investigation show significant agreement between the products computed and those obtained in experimental studies. Additional validation of this method can be seen in specific products obtained and an analysis of the CO/CO2 ratio in the product distribution.

Keywords

biodiesel, density functional theory, direct dynamics, thermal decomposition, pyrolysis, fatty-acid methyl esters, methyl linoleate, temperature-accelerated molecular dynamics

Subject Categories

Environmental Chemistry | Organic Chemistry | Physical Chemistry

Copyright

© Michael Bakker

Open Access

Share

COinS