Date of Graduation

Summer 2023

Degree

Master of Science in Chemistry

Department

Chemistry and Biochemistry

Committee Chair

Matthew Siebert

Abstract

The process of extracting and refining crude oil is both expensive and environmentally hazardous. The synthesis of biodiesel sourced from vegetable oils is a renewable process and less hazardous to the environment. Therefore, we seek to understand the pyrolysis procedure at an atomic level in hopes of optimizing future fuel viability. Herein, I analyze methyl stearate (a component of biodiesel) using an in-house database of ab initio trajectories, each simulating 1.0 ps (with 1.0 fs resolution). These jobs were observed for significant bond-breaking/forming events, the type of fragments produced, and the exact position and time for each event. Statistical analysis was performed on the data to coalesce significant pathways. Programs that employ density functional theory were used to determine their thermodynamic properties with increased accuracy. Understanding the unique characteristics of these fragments is important in engineering future biodiesel formulations as a source of alternative energy

Keywords

transesterification, methyl esters, density functional theory, molecular dynamics, simulations

Subject Categories

Chemistry | Computational Chemistry | Physical Sciences and Mathematics

Copyright

© Sarah J. Adeoye

Open Access

Share

COinS