Low temperature processed highly conducting, transparent, and wide bandgap Gd doped CdO thin films for transparent electronics
Abstract
Gadolinium (Gd) doped cadmium oxide (CdO) thin films are grown at low temperature (100 °C) using pulsed laser deposition technique. The effect of oxygen partial pressures on structural, optical, and electrical properties is studied. X-ray diffraction studies reveal that these films are polycrystalline in nature with preferred orientation along (1 1 1) direction. Atomic force microscopy studies show that these films are very smooth with maximum root mean square roughness of 0.77 nm. These films are highly transparent and transparency of the films increases with increase in oxygen partial pressure. We observe an increase in optical bandgap of CdO films by Gd doping. The maximum optical band gap of 3.4 eV is observed for films grown at 1 × 10−5 mbar. The electrical resistivity of the films first decreases and then increases with increase in oxygen partial pressure. The lowest electrical resistivity of 2.71 × 10−5 Ω cm and highest mobility of 258 cm2/Vs is observed. These low temperature processed highly conducting, transparent, and wide bandgap semiconducting films could be used for flexible optoelectronic applications.
Department(s)
Physics, Astronomy, and Materials Science
Document Type
Article
DOI
https://doi.org/10.1016/j.jallcom.2011.01.007
Keywords
gadolinium, cadmium oxide, bandgap, pulsed laser deposition, thin film
Publication Date
2011
Recommended Citation
Gupta, R. K., K. Ghosh, R. Patel, and P. K. Kahol. "Low temperature processed highly conducting, transparent, and wide bandgap Gd doped CdO thin films for transparent electronics." Journal of alloys and compounds 509, no. 10 (2011): 4146-4149.
Journal Title
Journal of Alloys and Compounds